Learning Transferable Features for
Implicit Neural Representations

Kushal Vyas Ahmed Imtiaz Humayun Aniket Dashpute
kushal .vyas@rice.edu imtiaz@rice.edu aniket.dashpute@rice.edu
Richard G. Baraniuk Ashok Veeraraghavan Guha Balakrishnan
richb@rice.edu vashok@rice.edu guha@rice.edu

Rice University

Abstract

Implicit neural representations (INRs) have demonstrated success in a variety of
applications, including inverse problems and neural rendering. An INR is typically
trained to capture one signal of interest, resulting in learned neural features that
are highly attuned to that signal. Assumed to be less generalizable, we explore the
aspect of transferability of such learned neural features for fitting similar signals.
We introduce a new INR training framework, STRAINER that learns transferrable
features for fitting INRs to new signals from a given distribution, faster and with
better reconstruction quality. Owing to the sequential layer-wise affine operations
in an INR, we propose to learn transferable representations by sharing initial
encoder layers across multiple INRs with independent decoder layers. At test
time, the learned encoder representations are transferred as initialization for an
otherwise randomly initialized INR. We find STRAINER to yield extremely powerful
initialization for fitting images from the same domain and allow for a ~ +10dB
gain in signal quality early on compared to an untrained INR itself. STRAINER
also provides a simple way to encode data-driven priors in INRs. We evaluate
STRAINER on multiple in-domain and out-of-domain signal fitting tasks and inverse
problems and further provide detailed analysis and discussion on the transferability
of STRAINER’s features. Our demo can be accessed here.

1 Introduction

Implicit neural representations (INRs) are a powerful family of continuous learned function ap-
proximators for signal data that are implemented using multilayer perceptron (MLP) deep neural
networks. An INR fp : R™ — R"™ maps coordinates lying in a m-dimensional space to a value in
a n-dimensional output space, where 6 represents the MLP’s tunable parameters. For example, a
typical INR for a natural image would use an input space in R? (consisting of the 2 and ¥ pixel coor-
dinates), and an output space in R? (representing the RGB value of a pixel). INRs have demonstrated
several useful properties including capturing details at all spatial frequencies [39, 136], providing
powerful priors for natural signals [36}39], and facilitating compression [12} 27]]. For these reasons,
in the past 5 years, INRs have found important uses in image and signal processing including shape
representation [17, [16], novel view synthesis [31} 34} 42]], material rendering [24]], computational
imaging [} [30]], medical imaging [49], linear inverse problems [8} 44|, virtual reality [[L1] and
compression [12, 27, 43| 51].

38th Conference on Neural Information Processing Systems (NeurIPS 2024).


https://kushalvyas.github.io/strainer.html

Shared Encoder, fy  Decoders, g (c) Reconstructed output

ils \ STRAINER SIREN Ground Truth
o '
0 [l L !
£
R= X il
: [
= Y 1
=

27.94 dB

36.35dB

(b) Fitting
new image
=

PSNR at 200 iterations

Figure 1: STRAINER - Learning Transferable Features for Implicit Neural Representations.
During training time (a), STRAINER divides an INR into encoder and decoder layers. STRAINER fits
similar signals while sharing the encoder layers, capturing a rich set of transferrable features. At test-
time, STRAINER serves as powerful initialization for fitting a new signal (b). An INR initialized with
STRAINER’s learned encoder features achieves (c) faster convergence and better quality reconstruction
compared to baseline STREN models.

A key difference between training INRs compared to other neural architectures like CNNs and
Transformers is that a single INR is trained on a single signal. The features learned by an INR,
therefore, are finely tuned to the morphology of just the one signal it represents. SplineCAM [19]
shows that INRs learn to finely partition the input coordinate space by essentially overfitting to
the spatial gradients (edges) of the signal. While this allows an INR to represent its signal with
high fidelity, its features can not “transfer” in any way to represent a second signal, even with
similar content. If INRs could exhibit elements of transfer learning, as is the case with CNNs and
Transformers, their potential would dramatically increase, such as by encoding data distribution
priors for inverse imaging problems.

In this work, we take a closer look at INRs and transferable features, and demonstrate that the first
several layers of an INR can be readily transferred from one signal to another from a domain when
trained in a shared setting. We propose STRAINER , a simple INR training framework to do so (see
Figure[I). STRAINER separates an INR into two parts: an “encoder” that maps coordinates to features,
and a “decoder” that maps those features to output values. We fit the encoder over a number of
training signals (1 to 10 in our experiments) from a domain, e.g., face images, with separate decoders
for each signal. At test time, we initialize a new INR for the test signal consisting of the trained
encoder and a randomly initialized decoder. This INR may then be further optimized according to the
application of interest. STRAINER offers a simple and general means of encoding data-driven priors
into an INR’s parameter initialization.

We empirically evaluate STRAINER in several ways. First, we test STRAINER on image fitting
across several datasets including faces (CelebA-HQ) and medical images (OASIS-MRI) and show
(Figure 2) that STRAINER’s learned features are indeed transferrable resulting in a ~+10dB gain in
reconstruction quality compared to a vanilla SIREN model . We further assess the data-driven prior
captured by STRAINER by evaluating it on inverse problems such as denoising and super resolution.
Lastly, we provide a detailed exploration of how STRAINER learns transferable features by exploring
INR training dynamics. We conclude by discussing consequences of our results for the new area of
INR feature transfer.

2 Background

Implicit neural representations. We define fy(p) as an implicit neural representation (INR)
[391 29] where fy is a multi-layer perceptron (MLP) with randomly initialized weights 6 and p is
the m-dimensional coordinates for the signal. Each layer in the MLP is an affine operation followed



by a nonlinearity such as ReLU [31]], or sine [39]. Given an n-dimensional signal I(p), the INR
learns a mapping f : R™ — R™. The INR is iteratively trained to fit the signal by minimizing a loss
function such as Ly loss between the signal I(p) and its estimate fp(p):

9*:argngnz | Afo(pi) — () 15 M

where p;’s € R"™ span the given coordinates, §* are the optimal weights that represent the signal,
and A is a differentiable forward model operator such as identity for signal representation and a
downsampling operation for inverse problems such as super-resolution.

Representation capacity of INRs. The repre-
sentation capacity of an INR can be described
as the quality of signal the INR can repre-
sent within some number of iterations. ReLU-
based INRs suffer from spectral bias during
training[26]], preferentially learning low fre-
quency details in a signal and thus leading to
a blurry reconstruction of the represented signal.
Fourier positional encodings [21} 131} 46] or si-
nusoidal activation functions (SIREN ) [39] help
better capture high frequency information.

w
o

I
o

w
o

[}
(=]

- SIREN — IPCw TTO

Peak-Signal to Noise Ratio(PSNR)

Recent works increase the representation capac- —— SIREN finetuned — TransINR w TTO
. . . . . . — Meta-Learned 5K + IPC w/o TTO
1ty of INRs with activations flexible in the fre- 10 --- STRAINER (1 decoder) *  TransINR (w/0) TTO

—— STRAINER-10 (10 decoders)

quency domain. WIRE [36] uses a continuous 5 s . o s
Gabor wavelet-based nonlinearity, and demon- Tterations

strates impressive results for a range of forward

and inverse problems. FINER [26] splits the Fjgure 2: STRAINER learns faster. We show the
sine nonlinearity to have a flexible frequency reconstruction quality (PSNR) of different initial-
coverage, and DINER[50] uses a hash map to  jzation schemes for in-domain image fitting on
non-uniformly map the input coordinates to a (Celeb A-HQ [22]. We compare SIREN [39] model
feature vector, effectively re-arranging the spa- jnitialized by (1) random weights (SIREN), (2) fit-
tial arrangement of frequencies and leading to  ting on another face image (SIREN finetuned), (3)
faster and better reconstruction quality. STRAINER -1 (trained using one face image), and
(4) STRAINER-10 (trained using ten face images).
We also evaluate against multiple baselines such as
Meta-Learned 5K [45], TransINR[9]], and IPC[23]

Weight initialization for INRs.  Previous
work has shown that smart initialization of INR
weights allows for faster convergence. As shown
in the SIREN study [39], hyper-networks are pro-
posed to capture a prior over the space of implicit functions, mapping a random code to the weights
of a SIREN model. Further, TransINR[9] also shows Transformer-hypernetworks as powerful met-
alearners for INR weight initialization. MetaSDF [38]] and Light Field Networks (LFN) [40] use
meta-learning-based initialization schemes to fit signed distance functions (SDFs) and light fields.
Neural Compression algorithms [[14,43]] use weights obtained from meta-learning optimization as a
reference to store MLP weights, leading to better compression than naively storing MLP weights.
Tancik et al. [45] propose meta-learning-based approaches such as Model-Agnostic Meta-Learning
(MAML)[15]] and Reptile[32]] for coordinate based neural representations. While these meta-learning
approaches yield powerful initialization, they often require long computation time (over 150K
steps [45]) and ample numbers of training data, and are unstable to train [48]]. Further, meta-learning
initial modulations for an INR which are later optimized to fit data within few gradient updates
has been shown to be an effective and scalable[6] strategy for smoothly representing data(sets) as
functa(sets)[13]]. Contrary to our approach, Implicit Pattern Composers (IPC)[23]] proposes to keep
the second layer of an INR instance-specific, while sharing the remaining layers and use a transformer
hypernetwork to learn the modulations for the INR.

Prior informed INRs. Recent work has also explored embedding a learned prior in INRs for
tasks such as audio compression, noise removal, and better CT reconstructions. Siamese Siren [25]]
uses a similar approach where they propose a compact siamese INR whose initial layers are shared
followed by 2 siamese decoders. Since 2 randomly initialized decoders will yield slightly different
reconstructions, this difference is leveraged for better noise estimation in audio signal. NERP [37]
learns an internal INR prior for medical imaging by first fitting high quality MRI or CT data. Weights



of this learned INR are used as an initialization for reconstructing new MRI or CT undersampled data.
While this paper shows a method to learn an implicit prior, their prior embedding is learned from
a single MRI or CT scan of the same subject whereas our work explores learning a prior for INRs
by constraining it to learn an underlying implicit representation across multiple different images.
PINER [41] introduces a test-time INR adaptation framework for sparse-view CT reconstruction with
unknown noise.

3 Methods

We introduce STRAINER . We first explain our motivation to share initial layers in an INR Section [3.1]
In Section we describe the training phase of STRAINER where we learn transferrable features for
INRs by sharing the initial layers of N INRs being fit independently to N images. Section[3.3] details
how our captured basis is used to fit an unseen image. In subsequent sections, we seek to understand
what our shared basis captures and how to expand it to other problems such as super resolution. For
simplicity, we build upon the SIREN [39] model as our base model.

3.1 Why share the initial INR layers?

A recent method called SplineCAM [19] provides a lens with which to visualize neural network
partition geometries. SplineCAM interprets an INR as a function that progressively warps the
input space and fits a given signal through layerwise affine transforms and non-linearities [[19]]. For
continuous piecewise affine activation functions, we use an approximation to visualize (see Figure|[6)
the deep network’s partition geometry for different pre-activation level sets [20].

An INR fit to a signal highly adapts to the underlying structure of the data in a layer-wise fashion.
Furthermore, by approximating the spatial position of the pre-activation zero level sets, we see
that initial layers showcase a coarse, less-partitioned structure while deeper layers induce dense
partitioning collocated with sharp changes in the image. Since natural signals tend to be similar
in their lower frequencies, we hypothesize that initial layers of multiple INRs are better suited for
transferability. We therefore design STRAINER to share the initial encoder layers, effectively giving
rise to an input space partition that can generalize well across different similar signals.

3.2 Learning transferable features from /V images

Consider a SIREN [39] model h(p) with L layers. Let K out of L layers correspond to an encoder sub-
network represented as fp The remaining layers correspond to the decoder sub-network represented
as g4 as seen in Figure Eka). For given input coordinates p, we express the SIREN model Ay g(p) as a
composition (o) of our encoder-decoder sub-networks.

hgo(p) = 9o © fo(p) )

In a typical case, given the task of fitting /V signals, each of the NV signals is independently fit to
an INR, thus not leveraging any similarity across these images. Since we want to learn a shared
representation transferrable across multiple similar images, our method shares the encoder fy across
all N INRs while maintaining a set of individual signal-specific decoders g;) e g(];[ .Our overall
architecture is shown in Figure[I] We call this STRAINER’s training phase - Figure[Ta). We start with
randomly initialized layers and optimize the weights to fit NV signals in parallel. For each signal I;(p),
we use a Lo loss between I;(p) and its corresponding learned estimate hfb, ¢(p) and sum the loss over
all the N signals. Iteratively, we learn a set of weights © that minimizes the following objective:

N
* . i T 2
0 = arg min ;:1 Il g5 0 fo(p) — Li(p) I3 > ©)

where © = [0, ¢! ...¢"] represents the full set of weights of the shared encoder (¢) and the N
different decoders (g;, . gf;’ ) and ©* represents the resulting optimized weights.

3.3 Fitting an unseen signal with STRAINER

After sufficient iterations during STRAINER’S training phase, we get optimized encoder weights fy-
which corresponds to the rich shared representation learned over signals of the same category. To fit a



(a) PCA of learned features (b) PSNR after 0, 50, 100, 2000 iters respectively

#0 #50 #100 o 832dB  29.74dB  34.64dB  55.02dB
M o= '?; ‘.,..‘;‘4 ’ I : 4
m A 5\
E ' 9 ' Ul 1.0
e s = Lo
g v 7.
| 4 0.0 26.17dB  27.59dB  38.59 dB
o A o » " o a
5 Al
z  # Wk | 110
. N+
- - 20

Figure 3: Visualization of learned features in STRAINER and baseline SIREN model. We visualize
(a) the first principal component of the learned encoder features for STRAINER and corresponding
layer for SIREN . At iteration O, STRAINER’s features already capture a low dimensional structure
allowing it to quickly adapt to the cat image. High frequency detail emerges in STRAINER’s learned
features by iteration 50, whereas SIREN is lacking at iteration 100. The inset showing the power
spectrum of the reconstructed image further confirms that STRAINER learns high frequency faster.
We also show the (b) reconstructed images and remark that STRAINER fits high frequencies faster.

novel signal I, (p) we initialize the STRAINER model with the learned shared encoder weights fy—g~
and randomly initialize decoder g(f weights to solve for:

0", 0" = argmin || g o fo=o-(v) = Iu(p) II3 - )

fo—o+ serves as a learned initial encoder features. Our formulation is equivalent to a initial set of
learned encoder features followed by a set of random projections. While fitting an unseen signal, we
iteratively update all the weights of the STRAINER model, similar to any INR.

3.4 Learning an intermediate partition space in the shared encoder fy-

During the training phase, explicitly sharing layers in STRAINER allows us to learn a set of INR
features which exhibits a common partition space shared across multiple images. Since deep networks
perform layer wise subdivision of the input space, sharing the encoder enforces the layer to find the
partition that can be further subdivided into multiple coarse partitions corresponding to the tasks being
trained. In Figure [f[a.ii), while pre-training an INR using the STRAINER framework on CelebA-HQ
dataset, we see emergence of a face-like structure captured in our STRAINER encoder fy-. We expect
our STRAINER encoder weights fy- to be used as transferrable features and be used as initialization
for fitting unseen in-domain samples.

In comparison, meta learning methods to learn initialization for INRs[43]] exhibit a partitioning of
the input space that is closer to random. As seen in Figure [6(a.i) there is a faint image structure
captured by the the learned initialization. This is an indication that the initial subdivision of the
input space, found by the meta learned pre-training layers, captures less of the domain specific
information therefore is a worse initialization compared to STRAINER . We further explain our
findings in Section[5]and discuss STRAINER’s learned features being more transferrable and lead to
better quality reconstruction.

4 Experiments

In all experiments, we used the SIREN [39] MLP with 6 layers and sinusoid nonlinearities. We
considered two versions of STRAINER : (i) STRAINER (1 decoder), where the encoder layers are
initialized using our shared encoder trained on a single image, and (ii) STRAINER-10 (10 Decoders),
where the encoder layers are initialized using our shared encoder trained on 10 images. We considered
the following baselines: (i) a vanilla SIREN model with random uniform initialization [39], (ii) a
fine-tuned SIREN model initialized using the weights from another SIREN fit to an image from the
same domain, (iii) a SIREN model initialized using Meta-learned 5K [43], (iv) transformer-based
metalearning models such as TransINR[9]] and IPC[23]]. We ensured an equal number of learnable



Encoder(1) Encoder(5) Decoder
. —— SIREN . —— SIREN _3\ —— SIREN

10 STRAINER-10 10 STRAINER-10 10 i\‘ STRAINER-10
= = =
3 3 3 e @@
5107 \ 51070 5107

107 10-7 107

200 400 600 800 200 400 600 800 200 400 600 800

Iterations

Iterations

Iterations

Figure 4: STRAINER converges to low and high frequencies fast. We plot the histogram of absolute
gradients of layers 1,5 and last over 1000 iterations while fitting an unseen signal. At test time,
STRAINER’s initialization quickly learns low frequency, receiving large gradients update at the start in
its initial layers and reaching convergence. The Decoder layer in STRAINER also fits high frequency
faster. Large gradients from corresponding SIREN layers show it learning significant features as late
as 1000 iterations.

parameters (neurons) for all models. We normalized all images between (0-1), and input coordinates
between (-1,1). We used the Adam optimizer with a learning rate of 10~* for STRAINER’s training
and test-time evaluation, unless mentioned otherwise. Further implementation details are provided in
Supplementary.

4.1 Datasets

We mainly used the CelebA-HQ [22], Animal Faces-HQ (AFHQ) [10], and OASIS-MRI [[18] 28]
images for our experiments. We randomly divided CelebA-HQ into 10 train images and 550 test
images. For AFHQ, we used only the cat data, and used ten images for training and 368 images for
testing. For OASIS-MRI, we used 10 of the (template-aligned) 2D raw MRI slices for training, and
144 for testing. We also used Stanford Cars[2] and Flowers[1]] to further validate out of domain
generalization and Kodak [3] true images for demonstrating high-resolution image fitting.

4.2 Training STRAINER’S shared encoder

We first trained separate shared encoder layers of STRAINER on 10 train images from each dataset.
We share five layers, and train a separate decoder for each training image. For each dataset, we trained
the shared encoder for 5000 iterations until the model acheives PSNR ~ 30d B for all training images.
We use the resulting encoder parameters as initialization for test signals in the following experiments.
For comparison, we also trained the Meta-learned 5K baseline using the implementation provided
by Tancik et.al.[45] with 5000 outer loop iterations. We also use the implementation provided by
IPC[23] as our baselines for TransINR[9] and IPC[23]] and train them with 14,000 images from
CelebA-HQ . We report a comparison of number of training images and parameters, gradient updates,
and learning time in Table 3]

4.3 Image fitting (in-domain)

We first evaluated STRAINER on the task of in-domain image fitting. We cropped and resized all
images to 178 x 178 and ran test-time optimization on all models for 2000 steps.

At test-time, both STRAINER and STRAINER-10 use only 1 decoder, resulting in the same number of
parameters as a SIREN INR. Table[T|shows average image metrics for in-domain image fitting reported
with 1 std. deviation. Instead of naively fine tuning using another INR, STRAINER’s design of sharing
initial layers allows for learning highly effective features which transfer well across images in the
same domain, resulting in high quality reconstruction across CelebA-HQ and AFHQ and comparable
to Meta-learned 5K for OASIS-MRI images. Table [3[CelebA-HQ , ID) also shows that STRAINER
initialization results in better quality reconstruction, when optimized at test-time, compared to more
recent transformer-based INR approaches such as TransINR and IPC as well.



Table 1: In-domain image fitting evaluation. STRAINER’s learned features yield powerful initializa-
tion at test-time resulting in high quality in-domain image fitting

CelebA-HQ AFHQ OASIS-MRI

Method PSNR?T SSIMT PSNR? SSIM? PSNR?} SSIM?

SIREN 4491 +2.13 0.991 £0.007 45.11 £3.13 0991 £0.005 53.03+£1.72 0.999 4+ 0.0002
SIREN fine-tuned 51.11 £3.16 0.997 £0.013 53.07 = 3.47 0997 £0.001 58.86 +£4.12 0.999 4+ 0.0012
Meta-learned 5K 53.08 +£3.36  0.994 +£0.053 53.27 £2.52 0.996 +0.044 67.02+2.27 0.999 + 0.0000
STRAINER (1 decoder) 50.34 +2.81 0.997 +£0.001 51.27+2.94 0.997 +0.001 57.76 +2.19 0.999 + 0.0001
STRAINER-10 57.80 +3.46 0.999 +0.001 58.06 +£3.75 0.999 +0.001 62.80+3.17 0.999 + 0.0003

SIREN STRAINER Meta-Learned 5K STRAINER-10 Ground truth

CL
N

V=R VEZR Vs

. .
N\ N

Figure 5: Fitting MRI images from OASIS-MRI dataset. At just 100 iterations, STRAINER is able
to represent medical images with high quality. STRAINER’s initialization allows for fast recovery for
sparse and delicate structures, showing applicability in low-resource medical domains as well.

Table 2: Out of domain image fitting evaluation, when trained on CelebA-HQ and tested on
AFHQ and OASIS-MRI. STRAINER’s learned features are a surprisingly good prior for fitting
images out of its training domain.

AFHQ OASIS-MRI

Method PSNR?T SSIMt PSNR?T SSIMt
Meta-learned 5K 5240 £4.21 0991 +£0.077 6506+ 1.04 0.999 = 0.00001
STRAINER-10 57.46 £3.39  0.999 £ 0.0003 72.21 £8.73  0.999 = 0.0001
STRAINER-10 (Gray) - - 74.61 £9.96  0.999 + 0.0003

Table 3: Baseline evaluation for image-fitting for in-domain(ID) and out-of-domain(OD) data.
STRAINER learns more transferable features resulting in better performance across the board. Models
trained on CelebA-HQ unless mentioned otherwise. TTO = Test time optimization.

CelebA-HQ (ID) AFHQ (OOD) OASIS MRI (OOD)

Method PSNRT PSNRT PSNR?T
Meta-learned 5K 53.08 52.40 55.86
Trans INR w/o TTO 31.59 28.63 31.97
Trans INR w TTO 51.86 49.01 55.45
IPC(ReLU + Pos Enc.) w/o TTO 33.27 29.96 33.96
IPC(ReLU + Pos Enc.) w TTO 49.72 47.19 51.35
STRAINER-10 57.80 57.46 59.50
STRAINER-10 ( trained on Flowers[T]) - 56.98 58.52
STRAINER-10 ( trained on StanfordCars[2]) - 56.88 59.66

4.4 Image fitting (out-of-domain)

To test out-of-domain transferability of learned STRAINER features, we used STRAINER-10 ’s encoder
trained on CelebA-HQ as initialization for fitting images from AFHQ (cats) and OASIS-MRI datasets
(see Table [2). Since OASIS-MRI are single channel images, we trained Meta-learned 5K and
STRAINER-10 (GRAY) on the green channel only of CelebA-HQ images. To our surprise, we see
STRAINER-10 and STRAINER-10 (GRAY) clearly outperform not only Meta-learned 5K , but also
STRAINER-10 (in-domain). To further validate out of domain performance of STRAINER , we train



Table 4: Out-of-domain image fitting on Kodak Images [3]. STRAINER (trained on CelebA-HQ )
allows better convergence comparable to high capacity SIREN models as indicated by PSNR metric.

Parrot Airplane Statue
Method Width PSNRt SSIM?T LPIPS| PSNRtT SSIMt LPIPS| PSNRfT SSIMT LPIPS)
SIREN 256 36.77 0.94 0.13 31.89 0.87 0.19 34.68 0.94 0.093
STRAINER-10 256 39.55 0.96 0.087 35.03 0.92 0.09 37.84 0.96 0.037
SIREN 512 40.18 0.96 0.11 34.23 0.90 0.14 38.80 0.97 0.051

STRAINER-10 512 44.38 0.97 0.021 38.96 0.96 0.023 43.92 0.98 0.008

Table 5: Training time and compute complexity. We train all the methods for 5000 steps. STRAINER
instantly learns a powerful initialization with minimal data and significantly fewer gradient updates.

Method # training images  # learnable params  Gradient updates / iteration ~ Time (Nvidia A100)
SIREN N/A 264,707 N/A N/A

STRAINER (1 decoder) 1 264,707 264,707 11.84s
STRAINER-10 (10 decoders) 10 271,646 271,646 24.54s
Meta-learned SK 10 264,707 794,121 (=~ 3xmore) 1432.3s = 23.8 min
TransINR[9] 14,000 ~ 40M ~ 40M ~ 1 day

IPC[23] w TTO 14,000 ~ 40M ~ 40M ~ 1 day

Table 6: STRAINER accelerates recovery of latent images in inverse problems. STRAINER captures
an implicit prior over the training data allowing it to recover a clean latent image of comparable
quality 3x faster making it useful for inverse problems.

Super Resolution (Fast) Super-Resolution (HQ) Denoising
Method PSNR  # iterations PSNR  # iterations PSNR # iterations
SIREN 32.10 3329 32.10 3329 26.75 +1.67 203 + 66
STRAINER -10  31.56 1102 (=~ 3 x faster) 3243 3045 2641 +1.39 76 +27

STRAINER-10 ’s shared encoder on simply 10 images from Flowers[1]] and Stanford Cars[2]] datasets
which have different spatial distribution of color and high frequencies than AFHQ and OASIS-MRI.
For fair comparison, all models in Table [3{OOD) were fit with 3-channel RGB or concatenated gray
images in case of OASIS-MRI. As shown in Table [3(OOD), STRAINER- 10 provides superior out
of domain performance for AFHQ trained on CelebA-HQ , followed by Flowers and Stanford Cars.
For OASIS-MRI, we see STRAINER-10 having best performance when trained with StanfordCars.
This result suggests that STRAINER is capable of capturing transferable features that generalize well
across natural images.

STRAINER also fits high resolution Kodak[3]] images well and is comparable to SIREN networks with
twice the network width.

4.5 Inverse problems: super-resolution and denoising

STRAINER provides a simple way to encode data-driven priors, which can accelerate convergence on
inverse problems such as super-resolution and denoising. We sampled 100 images from CelebA-HQ
at 178 x 178 and added 2d B of Poisson random noise. We report mean values of PSNR achieved
by STRAINER and SIREN models along with the iterations required to achieve the values. For super-
resolution, we demonstrate results on one image from DIV2K[4, 47]], downscaled to 256 x 256
for a low resolution input. We used the formulation shown in Equation (I), with A set to a 4x
downsampling operation. To embed a prior relevant for clean images, we trained the shared encoder
of STRAINER with high quality images of resolution same as the latent recovered image. At test time,
we fit the STRAINER model to the corrupted image, following Equation (1) and recovered the latent
image during the iteration. We report STRAINER’s ability to recover latent images fast as well as with

high quality in Section



(a) Initialization (b) Fitting a new image

i. Meta-Learned 5K ii. STRAINER iii. SIREN iv. SIREN v. Meta-Learned 5K vi. STRAINER
E 2
= k=
g =
3 @)
< <
g g
= &
— —
I3 I3
g g
= &
— —
N N
— e
S ES
1] <
— —

Figure 6: Visualizing density of partitions in input space of learned models. We use the method
introduced in [20] to approximate the input space partition of the INR. We present the input space
partitions for layers 2,3,4 across (a) Meta-learned SK and STRAINER initialization and (b) at test
time optimization. STRAINER learns an input space partitioning which is more attuned to the prior
of the dataset, compared to meta learned which is comparatively more random. We also observe
that SIREN (iii) learns an input space partitioning highly specific to the image leading to inefficient
transferability for fitting a new image (iv) with significantly different underlying partitioned input
space This explains the better in-domain performance of STRAINER compared to Meta-learned 5K ,
as the shallower layers after pre-training provide a better input space subdivision to the deeper layers
to further subdivide.

5 Discussion and Conclusion

Results in Table [T} 3] demonstrate that STRAINER can learn a set of transferable features across an
image distribution to precisely fit unseen signals at test time. STRAINER-10 clearly achieves the
best reconstruction quality in terms of PSNR and SSIM on CelebA-HQ and AFHQ datasets, and is
comparable with Meta-learned 5K on OASIS-MRI images. STRAINER-10 also fits images fast and
achieves highest reconstruction quality than all baselines as shown in Figure[2] Comparing STRAINER
(1 decoder) with a fine-tuned SIREN , it seems that the representation learned on one image is not
sufficiently powerful. However, as little as 10 images result in a rich and transferable set of INR
features allowing STRAINER-10 to achieve ~7-10dB higher reconstruction quality than SIREN and
SIREN fine-tuned.

As seen in Table EKOOD) STRAINER also performs well on out-of-domain tasks, which is quite
surprising.

STRAINER’s transferable representations are capable of recovering small and delicate structures as
early as 100 iterations as shown in Figure [5and do not let the scale of features from the training
phase affect its reconstruction ability. Another interesting finding is that STRAINER-10 achieves far
better generalization for OASIS-MRI (Table[2) when pretrained on CelebA-HQ . Further, STRAINER
generalizes well to out-of-domain high-resolution images, as demonstrated by our experiments of
training STRAINER on CelebA-HQ and testing on the Kodak data (see Table ).

STRAINER is fast and cheap to run. Table [5|summarizes the time for learning the initialization for
a 6 layered MLP INR for STRAINER , Meta-learned 5K and transformer-based methods such as
TransINR and IPC. At 5000 iterations, STRAINER learns a transferable representation in just 24.54
seconds. Meta-learned 5K , in comparison, uses MAML[15] which is far more computationally
intensive and results in 20x slower runtime when exact number of gradient updates are matched.
Further, STRAINER ’s training setup is an elegant deviation from recent methods such as TransINR
and IPC, requiring large datasets and complex training routines.



5.1 Limitations

Due to the encoder layers of STRAINER being tuned on data and the later layers being randomly
initialized, we have observed occasional instability when fitting to a test signal in the form of
PSNR “drops.” However, we observe that STRAINER usually quickly recovers, and the speedup
provided by STRAINER outweighs this issue. While our work demonstrates that INR parameters
may be transferred across signals, it is not fully clear what features are being transferred, how they
change for different image distributions, and how they compare to the transfer learning of CNNs and
Transformers. Further work is needed to characterize these.

5.2 Further analysis of STRAINER

To further understand how STRAINER'’s initialized encoder enables fast learning of signals at test
time, we explored the evolution of STRAINER’s hidden features over iterations in Figure [3] In
Figure 3(a), we visualize the first principal component of learned INR features of the STRAINER
encoder and corresponding hidden layer for SIREN across iterations and observe that STRAINER
captures high frequencies faster than SIREN. This is corroborated by the power spectrum inset plots of
the reconstructed images. We also visualize a histogram of gradient updates in Figure 4} and observe
that STRAINER receives large gradients in its encoder layers early on during training, suggesting that
the encoder rapidly learns of low-frequency details.

Next, we visualize the input space partitions induced by STRAINER and the adaptability of
STRAINER's initialization for fitting new signals. We use the local complexity(LC) measure proposed
by Humayun et.al.[20] to approximate different pre-activation level sets of the INR neurons. For
ReLU networks, the zero level sets correspond to the spatial location of the non-linearities of the
network. For periodic activations, there can be multiple non-linearities affecting the input domain.
In Figure [6] we present the zero level sets of the network, and in Supplementary we provide the
+7 /2 shifted level sets. Darker regions in the figure indicate high LC, i.e., higher local non-linearity.
Figure[6|also presents partitions for the baseline models.

SIREN models tend to overfit, with partitions strongly adapting to image details. Since the sensitivity
to higher frequencies is mapped to specific input partitions, when finetuning with SIREN , the network
has to unlearn partitions of the pretrained image resulting in sub optimal reconstruction quality. When
comparing Meta-learned 5K with STRAINER , we see that STRAINER learns an input space partitioning
more attuned to the prior of the dataset, compared to Meta-learned SK which is comparatively more
random. While both partitions imply learning high-frequency details, STRAINER’s partitions are
better adapted to facial geometry, justifying its better in-domain performance.

6 Broader Impacts

STRAINER introduces how to learn transferable features for INRs resulting in faster convergence and
higher reconstruction quality. We show with little data, we can learn powerful features as initialization
for INRs to fit signals at test-time. Our method allows the use of INRs to become ubiquitous in
data-hungry areas such as patient specific medical imaging, personalized speech and video recordings,
as well as real-time domains such as video streaming and robotics. However, our method is for
training INRs to represent signals in general, which can adopted regardless of underlying positive or
negative intent.

Acknowledgments and Disclosure of Funding
This work is partially supported by NIH DeepDOF RO1DE032051-01, OneDegree CNS-1956297,
IARPA WRIVA 140D0423C0076 and NSF grants CCF1911094, 11S-1838177, and 1IS-1730574;

ONR grants N0O0014- 18-12571, N00014-20-1-2534, and MURI N00014-20-1-2787; AFOSR grant
FA9550-22-1-0060; and a Vannevar Bush Faculty Fellowship, ONR grant N0O0014-18-1-2047.

References

[1] Flower recognition. https://www.kaggle.com/datasets/alxmamaev/flowers-recognition.

10



[2] Stanford cars dataset. https://www.kaggle.com/datasets/jessicali9530/stanford-cars-dataset.

[3] Kodak lossless true color image suite. https://rOk.us/graphics/kodak/, 1999. [Accessed
2024-05-22].

[4] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution:
Dataset and study. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, July 2017.

[5] Benjamin Attal, Eliot Laidlaw, Aaron Gokaslan, Changil Kim, Christian Richardt, James
Tompkin, and Matthew O’Toole. Torf: Time-of-flight radiance fields for dynamic scene view
synthesis. Advances in neural information processing systems, 34:26289-26301, 2021.

[6] Matthias Bauer, Emilien Dupont, Andy Brock, Dan Rosenbaum, Jonathan Richard Schwarz,
and Hyunjik Kim. Spatial functa: Scaling functa to imagenet classification and generation,
2023.

[7] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo
Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
ShapeNet: An Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012
[cs.GR], Stanford University — Princeton University — Toyota Technological Institute at
Chicago, 2015.

[8] Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representation with
local implicit image function. In CVPR, 2021.

[9] Yinbo Chen and Xiaolong Wang. Transformers as meta-learners for implicit neural representa-
tions. In European Conference on Computer Vision, 2022.

[10] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image
synthesis for multiple domains, 2020.

[11] Nianchen Deng, Zhenyi He, Jiannan Ye, Budmonde Duinkharjav, Praneeth Chakravarthula,
Xubo Yang, and Qi Sun. Fov-nerf: Foveated neural radiance fields for virtual reality. /[EEE
Transactions on Visualization and Computer Graphics, 28(11):3854-3864, 2022.

[12] Emilien Dupont, Adam Golifiski, Milad Alizadeh, Yee Whye Teh, and Arnaud Doucet. Coin:
Compression with implicit neural representations. arXiv preprint arXiv:2103.03123, 2021.

[13] Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami, Danilo J. Rezende, and Dan Rosenbaum.
From data to functa: Your data point is a function and you should treat it like one. CoRR,
abs/2201.12204, 2022.

[14] Emilien Dupont, Hrushikesh Loya, Milad Alizadeh, Adam Golinski, Yee Whye Teh, and Arnaud
Doucet. Coin++: Neural compression across modalities. Transactions on Machine Learning
Research, 2022.

[15] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 1126—-1135. PMLR, 06-11 Aug 2017.

[16] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas Funkhouser. Local deep
implicit functions for 3d shape. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 4857-4866, 2020.

[17] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman, and Thomas
Funkhouser. Learning shape templates with structured implicit functions. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 7154-7164, 2019.

[18] Andrew Hoopes, Malte Hoffmann, Douglas N. Greve, Bruce Fischl, John Guttag, and Adrian V.
Dalca. Learning the effect of registration hyperparameters with hypermorph. Machine Learning
for Biomedical Imaging, 1(IPMI 2021):1-30, April 2022.

[19] Ahmed Imtiaz Humayun, Randall Balestriero, Guha Balakrishnan, and Richard G. Baraniuk.
Splinecam: Exact visualization and characterization of deep network geometry and decision
boundaries. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3789-3798, June 2023.

[20] Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Deep networks always
grok and here is why, 2024.

11


https://r0k.us/graphics/kodak/

[21] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31,

2018.

[22] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. CoRR, abs/1710.10196, 2017.

[23] Chiheon Kim, Doyup Lee, Saechoon Kim, Minsu Cho, and Wook-Shin Han. Generalizable
implicit neural representations via instance pattern composers. arXiv preprint arXiv:2211.13223,
2022.

[24] Alexandr Kuznetsov. Neumip: Multi-resolution neural materials. ACM Transactions on
Graphics (TOG), 40(4), 2021.

[25] Luca A Lanzendorfer and Roger Wattenhofer. Siamese siren: Audio compression with implicit
neural representations. arXiv preprint arXiv:2306.12957, 2023.

[26] Zhen Liu, Hao Zhu, Qi Zhang, Jingde Fu, Weibing Deng, Zhan Ma, Yanwen Guo, and Xun
Cao. Finer: Flexible spectral-bias tuning in implicit neural representation by variable-periodic
activation functions, 2023.

[27] Shishira R Maiya, Sharath Girish, Max Ehrlich, Hanyu Wang, Kwot Sin Lee, Patrick Poirson,
Pengxiang Wu, Chen Wang, and Abhinav Shrivastava. Nirvana: Neural implicit representations
of videos with adaptive networks and autoregressive patch-wise modeling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14378-14387,
2023.

[28] Daniel S. Marcus, Tracy H. Wang, Jamie Parker, John G. Csernansky, John C. Morris, and
Randy L. Buckner. Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI
Data in Young, Middle Aged, Nondemented, and Demented Older Adults. Journal of Cognitive
Neuroscience, 19(9):1498-1507, 09 2007.

[29] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 4460-4470, 2019.

[30] Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla, Pratul P Srinivasan, and Jonathan T
Barron. Nerf in the dark: High dynamic range view synthesis from noisy raw images. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
16190-16199, 2022.

[31] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,
and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV,
2020.

[32] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999, 2018.

[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library, 2019.

[34] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. Con-
volutional occupancy networks. In Computer Vision—ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part 111 16, pages 523—-540. Springer, 2020.

[35] Stanford 3D Scans Repository. Thai statue.

[36] Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha Balakrishnan, Ashok Veeraraghavan,
and Richard G Baraniuk. Wire: Wavelet implicit neural representations. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18507-18516,
2023.

[37] Liyue Shen, John Pauly, and Lei Xing. Nerp: implicit neural representation learning with prior
embedding for sparsely sampled image reconstruction. /EEE Transactions on Neural Networks
and Learning Systems, 2022.

12



[38] Vincent Sitzmann, Eric Chan, Richard Tucker, Noah Snavely, and Gordon Wetzstein. Metasdf:
Meta-learning signed distance functions. Advances in Neural Information Processing Systems,
33:10136-10147, 2020.

[39] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462-7473, 2020.

[40] Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh Tenenbaum, and Fredo Durand. Light
field networks: Neural scene representations with single-evaluation rendering. Advances in
Neural Information Processing Systems, 34:19313-19325, 2021.

[41] Bowen Song, Liyue Shen, and Lei Xing. Piner: Prior-informed implicit neural representation
learning for test-time adaptation in sparse-view ct reconstruction. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pages 1928—1938, 2023.

[42] Pratul P Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Mildenhall, and
Jonathan T Barron. Nerv: Neural reflectance and visibility fields for relighting and view
synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7495-7504, 2021.

[43] Yannick Striimpler, Janis Postels, Ren Yang, Luc Van Gool, and Federico Tombari. Implicit
neural representations for image compression. In European Conference on Computer Vision,
pages 74-91. Springer, 2022.

[44] Yu Sun, Jiaming Liu, Mingyang Xie, Brendt Wohlberg, and Ulugbek S Kamilov. Coil:
Coordinate-based internal learning for tomographic imaging. IEEE Transactions on Com-
putational Imaging, 7:1400-1412, 2021.

[45] Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P Srinivasan, Jonathan T
Barron, and Ren Ng. Learned initializations for optimizing coordinate-based neural repre-
sentations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2846-2855, 2021.

[46] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional domains. NeurIPS, 2020.

[47] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, Lei Zhang, Bee Lim, et al.
Ntire 2017 challenge on single image super-resolution: Methods and results. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017.

[48] Anna Vettoruzzo, Mohamed-Rafik Bouguelia, Joaquin Vanschoren, Thorsteinn Régnvaldsson,
and KC Santosh. Advances and challenges in meta-learning: A technical review, 2023.

[49] Yuehao Wang, Yonghao Long, Siu Hin Fan, and Qi Dou. Neural rendering for stereo 3d
reconstruction of deformable tissues in robotic surgery. In Intl. Conf. Medical Image Computing
and Computer-Assisted Intervention, 2022.

[50] Shaowen Xie, Hao Zhu, Zhen Liu, Qi Zhang, You Zhou, Xun Cao, and Zhan Ma. Diner:
Disorder-invariant implicit neural representation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2023.

[51] Yunfan Zhang, Ties van Rozendaal, Johann Brehmer, Markus Nagel, and Taco Cohen. Implicit
neural video compression. In ICLR Workshop on Deep Generative Models for Highly Structured
Data, 2022.

13



Suplementary Material / Appendix

In our work, we increase the representation capacity of the INR by leveraging the similarity across
natural images (of a given class). Since each layer of an INR MLP is an affine transformation followed
by a non linearity, we interpret the INR as a function that progressively warps the input coordinate
space to fit the given signal, in our case the signal being an image. Similar images when independently
fit to their respective INRs capture similar low-frequency detail such as shape, geometry, etc. whereas
high-frequency information such as edges and texture are unique to each INR. We propose that these
low-frequency features from the initial layers of a learned INR are highly transferable and can be
used as a basis and initialization while fitting an unseen signal. To that end, we introduce a novel
method of learning our basis by sharing a set of initial layers across INRs fitting their respective
images.

Our implementation can be found on Eboogle Colab|

Understanding the effect of sharing encoder layers

We further investigate how the number of initial layers shared affects the quality of reconstructed
image. We start by sharing K = 1 layer as the encoder, and N — K layers in each decoder and vary
K from 1 to N — 1. K = N is equivalent to simply fine tuning the INR based on all weights from a
fellow model. We tabulate our results for image quality (PSNR) in a fixed runtime of 1000 iterations.
We find that sharing all but the last layer results in the most effective capturing of our shared basis
leading to higher reconstruction quality as seen in fig. [/} This also suggests that the last decoder of
the INR is mainly responsible for very localized features. Further our work motivates further interest
to sutdy the nature of the decoder layers itself.

We show the effect of sharing layers and resulting reconstruction quality. We use a 5 layered Siren
model for this experiment. We fit a vanilla Siren model to an image and report its PSNR in fig. [7]
Further, we train our shared encoder by sharing K = 1 layers and so on , until we share K = N — 1
layers.

We see that the reconstruction quality progressively increases by sharing layers.

60 1

501

40

30

Peak signal to noise ratio (PSNR)

201

Siren-finetuned
—— Strainer (Shared layers = 2)
—— Strainer (Shared layers = 3)
10 4 —— Strainer (Shared layers = 4)
—— Strainer (Shared layers = 5)

0 250 500 750 1000 1250 1500 1750 2000
Iterations

Figure 7: Sharing different number of layers in STRAINER’s encoder. We see that by increasing the
number of shared layers, STRAINER’s ability to recover the signal also improves.

Reporting std. deviation STRAINER for image fitting on CelebA-HQ

We also report the PSNR within 1 std. deviation while comparing STRAINER -10 with SIREN , SIREN
-finetuned, STRAINER (1-decoder), and Meta-learned 5K in Figure El

"https://colab.research.google.com/drive/ 1 fBZAwqESC_IrRPAe-hQZITWrMJuAKtG22usp=sharing

14


https://colab.research.google.com/drive/1fBZAwqE8C_lrRPAe-hQZJTWrMJuAKtG2?usp=sharing

(a) Roll (b) Rotate

ratio (PSNR)

Peak signal to noise

der learned from 1 image)
Strainer (proposed, leamed from 10 images)

0 250 500 750 1000 1250 1500 1750 2000
erations

(c) Flip

ratio (PSNR)
ratio (PSNR)

Peak signal to noise

10 fer leared from 1 image)

osed, leamed from 10 images) osed, learned from 10 images)

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
erations Kerations

Figure 8: Fitting STRAINER on shifted, rotated and flipped versions of a face image. We see that
despite the transformations done on a face image: (a) roll (wrapping the image both vertically and
horizontally), (b) rotate, (c) flip vertically, and (d) wrap vertically, STRAINER fits equally well on all
of them.

_ 60
[ad]
g
a 50
L
=
ol
~ 40
[
w0
2
Z 30
8
= —— SIREN
520 —— SIREN finetuned
L_@ —— Meta-Learned 5K
é 10 —— STRAINER (1 decoder)
—— STRAINER-10 (10 decoders)
0 500 1000 1500 2000

Iterations

Figure 9: STRAINER learns fast. We show a limited baseline comparison of STRAINER with SIREN ,
SIREN -finetuned and Meta-learned 5K methods for the task of image-fitting on CelebA-HQ dataset
and note that STRAINER achieves superior reconstruction quality.

Effect of orientation of the input image

We wanted to further assess whether the INR is overfitting to one particular aligned face arrangement.
To further test this, we take a test image and apply various augmentations such as flip, rotate, and roll
and study how STRAINER fits it (see Figure[S). We find that the initialization learned by strainer is
invariant, at test time, to the input signals orientation and can successfully capture the high frequency
details fast.

Measuring time for pretraining STRAINER and Meta-learned 5K

Our implementation is written in PyTorch[33] whereas Meta-learned 5K implemented by Tancik
et.al[45]] is a JAX implementation. For measuring runtime, we use the python’s time package and
very conservatively time the step where the forward pass and gradient updates occur in both methods.
Further, we run the code on an Nvidia A100 GPU and report the time after averaging 3 such runs

15



for each method. There may be system level differences, however, to the best of our knowledge and
observation, our timing estimates if not accurate are atleast indicative of the speedup provided by
STRAINER .

Training details for Kodak high resolution images

To further demonstrate that STRAINER’s can be adapted to high resolution images, we evaluated our
method on high quality Kodak[3] images with resolution 512 x 768 (see Tables ] and[7). We present
the reconstruction quality attained by STRAINER -10, SIREN model, and a SIREN model initialized
using Meta-learned 5K , with widths of 256,512. For this experiment, we train our STRAINER
encoder using CelebA-HQ Images which are resized to the same resolution to Kodak images. Further,
we follow all steps as previously described for test-image evaluation of Kodak images. Here is another
results from the Kodak high resolution images experiment.

Table 7: STRAINER allow better convergence comparable to high capacity Siren models, and meta-
learned initializations, as indicated by PSNR metric. Tested on high quality Kodak Images. ID =In
domain, OD= Out of domain.

Parrot (OD) Airplane (OD) Statue (OD) Painted Face(ID)
Width=256 PSNRtT SSIMt LPIPS| PSNRT SSIMt LPIPS|) PSNRfT SSIMT LPIPS| PSNRT SSIMt LPIPS|
SIREN 36.77 0.94 0.13 31.89 0.87 0.19 34.68 0.94 0.093 32.03 0.85 0.26

STRAINER-10 39.55 0.96 0.087 35.03 0.92 0.09 37.84 0.96 0.037 35.15 0.92 0.11
Meta-learned 5K 37.07 0.94 0.06 33.92 0.89 0.12 34.32 0.93 0.07 32.96 0.89 0.11
Width=512 PSNRT SSIMt LPIPS| PSNRt SSIMT LPIPS| PSNRT SSIMt LPIPS| PSNRT SSIMT LPIPS|

SIREN 40.18 0.96 0.11 34.23 0.90 0.14 38.80 0.97 0.051 34.45 0.90 0.17
STRAINER-10 44.38 0.97 0.021 38.96 0.96 0.023 43.92 0.98 0.008 41.37 0.97 0.006
Meta-learned 5K 41.60 0.97 0.02 39.33 0.96 0.02 39.18 0.97 0.02 37.90 0.96 0.03

Results for Inverse problems - Super Resolution

We discuss how STRAINER provides a useful prior for inverse problems such as super resolution. For
the results reported in section[4.3] we attach supplementary plots as shown in fig.[T0] STRAINER-10
(Fast) is a STRAINER- 10 model with 5 shared encoder layers out of 6 total layers. STRAINER-10 (HQ)
is a high quality STRAINER model with 3 shared encoder layers. Unlike forward fitting, more degree
of randomness in the decoder helps recover better detail for inverse problems. We also showcase the
effectiveness of STRAINER for in domain super resolution shown in fig.[TT]

—— Strainer-10(HQ)
Strainer-10(Fast)
—— Siren

0 1000 2000 3000 4000 5000
Iterations

Figure 10: Super Resolution using STRAINER . We show the reconstructed results (a) on the left
using SIREN and STRAINER . We also plot (b) the trajectory of PSNR with iterations. STRAINER-10
(Fast) achieves comparable PSNR to SIREN in approximately a third of the runtime.

STRAINER for Occupancy fitting

STRAINER is a general purpose transfer learning framework which can be used to initialize INRs for
regressing 3D data like occupancy maps, radiance fields or video. To demonstrate the effectiveness

16



AT
" //f(( e

10 —— SIREN
STRAINER

0 1000 2000 3000 4000 5000
Iterations

Figure 11: In domain 4 x super resolution using STRAINER . We see that STRAINER allows for
faster convergence for in-domain super resolution making it useful especially for low time budgets.
Max value achieved by STRAINER : 40.43d B while SIREN achieves 39.75d B. Within 500 iterations
STRAINER achieves > 30dB PSNR

of STRAINER on 3D data, we have performed the following OOD generalization experiment. We
pre-train STRAINER on 10 randomly selected ‘Chair’ objects from the ShapeNet[7] dataset. At test
time, we fit the “Thai Statue’ 3D object[35]. STRAINER achieves a 12.3 relative improvement in
IOU compared to random initialization for a SIREN architecture — in 150 iterations STRAINER-10
obtains an IOU of 0.91 compared to an IOU of 0.81 without STRAINER-10 initialization. We present
visualizations of the reconstructed Thai Statue in Figure Upon qualitative evaluation, we see that
STRAINER-10 is able to capture ridges and edges better and faster than compared to SIREN.

17



Ground Truth

Figure 12: We use ten shapes from the chair category of ShapeNet[7] to train STRAINER , and
use that initialization to fit a much more complex volume (the Thai statue[33]). We compare the
intermediate outputs for both STRAINER and SIREN for 150 iterations to highlight STRAINER ’s
ability to learn ridges and high frequency information faster.

Offsetting Pre-activations

18



Siren Layers
2 3 4 5

Offset=0

Offset=pi/8

Offset=pi/6

Offset=pi/4

Offset=pi/3

Offset=pi/2

Figure 13: Siren offset

19



Offset=0

Offset=pi/8

Offset=pi/6

Offset=pi/4

Offset=pi/3

Offset=pi/2

Strainer Layers
3

Figure 14: Strainer offset

20



Metalearned Layers
2 3 4 5

Offset=0

Offset=pi/8

Offset=pi/6

Offset=pi/4

Offset=pi/3

Offset=pi/2

Figure 15: Meta-learned 5K offset

21



NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our goals and contributed are clearly stated in abstract and introduction. Our
method addresses the goals and we include results to support them.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations of our work in section[3.1]and section

. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Paper does not include theoretical results.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, all information about our models, training hyperparameters, dataset, and
number of iterations are provided in our report. Further we also provide the hardware
used and report figures such as train time to ensure further corroboration for successful
reproducibility. We discuss how choice of data also plays a role in our method’s performance.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes. We release the base code of our paper as a Google Colab notebook. We
also provide our code files in supplementary material. All data used in this paper belongs to
existing open source datasets and have been correctly cited to ensure reproduction. Upon
acceptance, we plan to clean and release our code base and share it on GitHub.

. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Careful treatment to our training method has been present in section 4]

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide our metrics with 1 std. deviation where needed. Our plots also
include 1 std. deviation to indicate the variability of results accumulated.

. Experiments Compute Resources

22



10.

11.

12.

13.

14.

15.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Experiment compute resources are mentioned in Section [d]as well as supple-
mentary material.

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We conform to the NeurIPS code of ethics.
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Discussed in section [6lin main submission.
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our methods do not entail a specific released model as it is applicable for
fitting any arbitrary signal. We express caution for potential misuse in section [¢]

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all used resources such as implementations of baselines and data. We
release our work with CC-By 4.0 license.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Details of dataset are provided in the Section [d] with correct citations. We
also provide code as a Google Colab notebook as well as a python file for the central idea
of our paper. While the python script allows to reproduce our intuition experiments, for
detailed reproduction of the paper, please follow steps mentioned in Section[d] Please refer
to attached zip file for assets.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Not applicable for our work. Paper does not involve crowdsourcing nor
research with human subjects.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

23


https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not applicable for our work. Paper does not involve crowdsourcing nor
research with human subjects.

24



	Introduction
	Background
	Methods
	Why share the initial INR layers?
	Learning transferable features from N images
	Fitting an unseen signal with strainer 
	Learning an intermediate partition space in the shared encoder f*

	Experiments
	Datasets
	Training strainer's shared encoder
	Image fitting (in-domain)
	Image fitting (out-of-domain)
	Inverse problems: super-resolution and denoising

	Discussion and Conclusion
	Limitations
	Further analysis of strainer 

	Broader Impacts

